Single Observation Adaptive Search for Continuous Simulation
Abstract
Scale-adaptive simulation (SAS) of the transient gas–liquid two-phase flow in a laboratory-scale continuous-casting mold is presented. The main objective is to investigate the applicability of the scale-adaptive unsteady Reynolds-averaged Navier–Stokes turbulent model (URANS SAS) for predicting the transient multiscale turbulent structures in a two-phase flow. Good quantitative agreements with the experimental data and the large eddy simulation (LES) results are obtained both for the time-averaged velocity field and for the transient turbulent characteristics. The introduction of the von Karman length-scale into the turbulence-scale equation allows the SAS model to dynamically adjust to the resolved turbulent structures. The LES-like pulsating behavior of the air gas and the large-scale liquid eddy magnitudes in the unsteady regions of flow field are captured by the SAS model. The classical − 5/3 law of power spectrum density (PSD) of the axial velocity is kept properly for the single-phase turbulent flow. For two-phase flow, the decay of PSD is too steep at the high-frequency region; the predicted PSD obtained with SAS is damped stronger than that estimated by LES. The SAS model offers an attractive alternative to the existing LES approach or to the other hybrid RANS/LES models for strongly unsteady flows.
References
-
M. Iguchi and N. Kasai: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 453-60.
-
B.G. Thomas, L.J. Mika, and F.M. Najjar: Metall. Mater. Trans. B, 1990, vol. 21, pp. 387-400.
-
L. Zhang, S. Yang, K. Cai, J. Li, X. Wan, and B.G. Thomas: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 63–83.
-
A.N. Kolmogorov: Dokl. Akad. Nauk SSSR, 1941, vol. 32, pp. 16-18.
-
A. Issakhov: Journal of Computer and Communications, 2013, vol. 1, pp. 1-5.
-
S.B. Pope: Turbulent Flows, Cambridge University Press, Cambridge, 2000, pp. 346-50.
-
Y. Miki and S. Takeuchi: ISIJ Int., 2003, vol. 43, pp. 1548-55.
-
Q. Yuan, S. Sivaramkrishnan, S.P. Vanka, and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35, pp. 967-82.
-
A. Ramos-Banderas, R. Sánchez-Perez, R.D. Morales, J. Palafox-ramos, L. Demedices-Garcia, and M. Diaz-cruz: Metall. Mater. Trans. B, 2004, vol. 35, pp. 449-60.
-
C. Real, R. Miranda, C. Vilchis, M. Barron, L. Hoyos, and J. Gonzalez: ISIJ Int., 2006, vol. 46, pp. 1183-91.
-
Z.Q. Liu, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 675-97.
-
F.R. Menter: Inter. J. Computational Fluid, 2009, vol. 23, pp.305-16.
-
F.R. Menter and Y. Egorov: Flow Turbulence Combust, 2010, vol. 85, pp. 113-38.
-
Y. Egorov, F.R. Menter, R. Lechner, and D. Cokljat: Flow Turbulence Combust, 2010, vol. 85, pp. 139-65.
-
B.G. Thomas, X. Huang and R. C. Suaaman: Metall. Mater. Trans. B, 1994, vol. 25, pp. 527.
-
D. Creech: Master's thesis, University of Illinois at Urbana Champaign, Urbana, IL, 1999.
-
H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32, pp. 253-67.
-
A. Ramos-Banderas, R.D. Morales, R. Sanchez-Perez, L. Garcia-Demedices, and G. Solorio-Diaz: Int. J. Multiphase Flow, 2005, vol. 31, pp. 643-65.
-
J. Klostermann, H. Chaves, and R. Schwarze: Steel Research Int., 2007, vol. 78, 595-601.
-
J. O. Hinze: Turbulence. McGraw-Hill Publishing Co., New York, 1975.
-
Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2014, vol. 54, pp. 1314-23.
-
Q. Yuan, T. Shi, S.P. Vanka, and B.G. Thomas: Computational Modeling of Materials, Warrendale, PA, Minerals and Metals Processing, 2001, pp. 491–500.
-
Z.Q. Liu, F.S. Qi, B.K. Li, and S.C.P. Cheung: Int. J. Multiphase Flow, 2016, vol. 79, pp. 190-201.
-
Z.Q. Liu, F.S. Qi, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 933-52.
-
Z.Q. Liu, B.K. Li, F.S. Qi, and S.C.P. Cheung: Powder Technology, 2017, vol. 319, pp. 139-47.
-
K. Timmel, C. Kratzsch, A. Asad, D. Schurmann, R. Schwarze, and S. Eckert: IOP Conference Series: Materials Science and Engineering, 2017, vol. 228, p. 012019. https://doi.org/10.1088/1757-899x/228/1/012019.
-
S. Sarkar, V. Singh, S.K. Ajmani, R.K. Singh, and E.Z. Chacko: ISIJ Int., 2018, vol. 58, pp. 68-77.
-
Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2013, vol. 53, pp. 484-92.
-
Z.Q. Liu and B.K. Li: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1833-49.
-
B.G. Thomas: Steel Research Int., 2018, vol. 89, 1700312.
-
J. Frohlich and D. von Terzi: Progress in Aerospace Sciences, 2008, vol. 44, pp. 349-77.
-
T. Ma, D. Lucas, T. Ziegenhein, J. Frohlich, and N.G. Deen: Chem. Eng. Sci., 2015, vol. 131, pp. 101-08.
-
C. Kratzsch, A. Asad and R. Schwarze: J. Manuf. Sci. Prod., 2015, vol. 15, pp. 49-57.
-
H.A. Jakobsen, B.H. Sannaes, S. Grevskott, and H.F. Svendsen: Ind. Eng. Chem. Res., 1997, vol. 36, pp. 4052-74.
-
M.T. Dhotre, B. Niceno, and B.L. Smith: Chem. Eng. J., 2008, vol. 136, pp. 337-48.
-
Y. Sato, M. Sadatomi, and K. Sekiguchi: Int. J. Multiphase Flow, 1975, vol. 2, pp.79-87.
-
F.R. Menter: AIAA Paper #93-2906, 24th Fluid Dynamics Conference, July 1993.
-
J. Smagorinsky: Month. Weather Rev., 1963, vol. 91, pp. 99-165.
-
M. Germano, U. Piomelli, P. Moin, and W.H. Cabot: Phys. Fluids A, 1991, vol. 3, pp.1760-65.
-
D.K. Lilly: Phys. Fluids A, 1992, vol. 4, pp. 633-35.
-
M. Ishii and N. Zuber: AIChE J, 1979, vol. 25, pp. 843-55.
-
D.A. Drew and R.T. Lahey: Int. J. Multiphase Flow, 1987, vol. 13, pp. 113-21.
-
J.C.R. Hunt, A.A. Wray, and P. Moin: Center for Turbulence Research Report, 1988, pp. 193–208.
-
D.J. Van Cauwenberge, C.M. Schietekat, J. Floré, K M. Van Geem, and G.B. Marin: Chem. Eng. J., 2015, vol. 282, pp. 66-76.
-
Z.Q. Liu and B.K. Li: Chem. Eng. J., 2018, vol. 338, pp. 465-77.
Acknowledgments
This work was financially supported by the Fundamental Research Funds for the Central Universities of China (No. N162504009), the National Natural Science Foundation of China (Nos. 51604070 and 51574068) and the China Scholarship Council (No. 201706085027). The financial supports by the RHI-Magnesita AG; the Austrian Federal Ministry of Economy, Family, and Youth; and the National Foundation for Research, Technology, and Development within the framework of the Christian Doppler Laboratory for Advanced Process Simulation of Solidification and Melting are gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted June 20, 2018.
About this article
Cite this article
Liu, Z., Vakhrushev, A., Wu, M. et al. Scale-Adaptive Simulation of Transient Two-Phase Flow in Continuous-Casting Mold. Metall Mater Trans B 50, 543–554 (2019). https://doi.org/10.1007/s11663-018-1443-0
-
Received:
-
Published:
-
Issue Date:
-
DOI : https://doi.org/10.1007/s11663-018-1443-0
Keywords
- Scale Adaptive Simulation (SAS)
- Resolved Turbulent Structures
- Large Eddy Simulation (LES)
- Reynolds-averaged Navier–Stokes (RANS)
- Unsteady Region
Source: https://link.springer.com/article/10.1007/s11663-018-1443-0
0 Response to "Single Observation Adaptive Search for Continuous Simulation"
Post a Comment