Single Observation Adaptive Search for Continuous Simulation

Abstract

Scale-adaptive simulation (SAS) of the transient gas–liquid two-phase flow in a laboratory-scale continuous-casting mold is presented. The main objective is to investigate the applicability of the scale-adaptive unsteady Reynolds-averaged Navier–Stokes turbulent model (URANS SAS) for predicting the transient multiscale turbulent structures in a two-phase flow. Good quantitative agreements with the experimental data and the large eddy simulation (LES) results are obtained both for the time-averaged velocity field and for the transient turbulent characteristics. The introduction of the von Karman length-scale into the turbulence-scale equation allows the SAS model to dynamically adjust to the resolved turbulent structures. The LES-like pulsating behavior of the air gas and the large-scale liquid eddy magnitudes in the unsteady regions of flow field are captured by the SAS model. The classical − 5/3 law of power spectrum density (PSD) of the axial velocity is kept properly for the single-phase turbulent flow. For two-phase flow, the decay of PSD is too steep at the high-frequency region; the predicted PSD obtained with SAS is damped stronger than that estimated by LES. The SAS model offers an attractive alternative to the existing LES approach or to the other hybrid RANS/LES models for strongly unsteady flows.

References

  1. M. Iguchi and N. Kasai: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 453-60.

    Article  Google Scholar

  2. B.G. Thomas, L.J. Mika, and F.M. Najjar: Metall. Mater. Trans. B, 1990, vol. 21, pp. 387-400.

    Article  Google Scholar

  3. L. Zhang, S. Yang, K. Cai, J. Li, X. Wan, and B.G. Thomas: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 63–83.

    Article  Google Scholar

  4. A.N. Kolmogorov: Dokl. Akad. Nauk SSSR, 1941, vol. 32, pp. 16-18.

    Google Scholar

  5. A. Issakhov: Journal of Computer and Communications, 2013, vol. 1, pp. 1-5.

    Article  Google Scholar

  6. S.B. Pope: Turbulent Flows, Cambridge University Press, Cambridge, 2000, pp. 346-50.

    Book  Google Scholar

  7. Y. Miki and S. Takeuchi: ISIJ Int., 2003, vol. 43, pp. 1548-55.

    Article  Google Scholar

  8. Q. Yuan, S. Sivaramkrishnan, S.P. Vanka, and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35, pp. 967-82.

    Article  Google Scholar

  9. A. Ramos-Banderas, R. Sánchez-Perez, R.D. Morales, J. Palafox-ramos, L. Demedices-Garcia, and M. Diaz-cruz: Metall. Mater. Trans. B, 2004, vol. 35, pp. 449-60.

    Article  Google Scholar

  10. C. Real, R. Miranda, C. Vilchis, M. Barron, L. Hoyos, and J. Gonzalez: ISIJ Int., 2006, vol. 46, pp. 1183-91.

    Article  Google Scholar

  11. Z.Q. Liu, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2014, vol. 45, pp. 675-97.

    Article  Google Scholar

  12. F.R. Menter: Inter. J. Computational Fluid, 2009, vol. 23, pp.305-16.

    Article  Google Scholar

  13. F.R. Menter and Y. Egorov: Flow Turbulence Combust, 2010, vol. 85, pp. 113-38.

    Article  Google Scholar

  14. Y. Egorov, F.R. Menter, R. Lechner, and D. Cokljat: Flow Turbulence Combust, 2010, vol. 85, pp. 139-65.

    Article  Google Scholar

  15. B.G. Thomas, X. Huang and R. C. Suaaman: Metall. Mater. Trans. B, 1994, vol. 25, pp. 527.

    Article  Google Scholar

  16. D. Creech: Master's thesis, University of Illinois at Urbana Champaign, Urbana, IL, 1999.

  17. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32, pp. 253-67.

    Article  Google Scholar

  18. A. Ramos-Banderas, R.D. Morales, R. Sanchez-Perez, L. Garcia-Demedices, and G. Solorio-Diaz: Int. J. Multiphase Flow, 2005, vol. 31, pp. 643-65.

    Article  Google Scholar

  19. J. Klostermann, H. Chaves, and R. Schwarze: Steel Research Int., 2007, vol. 78, 595-601.

    Article  Google Scholar

  20. J. O. Hinze: Turbulence. McGraw-Hill Publishing Co., New York, 1975.

    Google Scholar

  21. Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2014, vol. 54, pp. 1314-23.

    Article  Google Scholar

  22. Q. Yuan, T. Shi, S.P. Vanka, and B.G. Thomas: Computational Modeling of Materials, Warrendale, PA, Minerals and Metals Processing, 2001, pp. 491–500.

    Google Scholar

  23. Z.Q. Liu, F.S. Qi, B.K. Li, and S.C.P. Cheung: Int. J. Multiphase Flow, 2016, vol. 79, pp. 190-201.

    Article  Google Scholar

  24. Z.Q. Liu, F.S. Qi, B.K. Li, and M.F. Jiang: Metall. Mater. Trans. B, 2015, vol. 46, pp. 933-52.

    Article  Google Scholar

  25. Z.Q. Liu, B.K. Li, F.S. Qi, and S.C.P. Cheung: Powder Technology, 2017, vol. 319, pp. 139-47.

    Article  Google Scholar

  26. K. Timmel, C. Kratzsch, A. Asad, D. Schurmann, R. Schwarze, and S. Eckert: IOP Conference Series: Materials Science and Engineering, 2017, vol. 228, p. 012019. https://doi.org/10.1088/1757-899x/228/1/012019.

  27. S. Sarkar, V. Singh, S.K. Ajmani, R.K. Singh, and E.Z. Chacko: ISIJ Int., 2018, vol. 58, pp. 68-77.

    Article  Google Scholar

  28. Z.Q. Liu, B.K. Li, M.F. Jiang, and F. Tsukihashi: ISIJ Int., 2013, vol. 53, pp. 484-92.

    Article  Google Scholar

  29. Z.Q. Liu and B.K. Li: Metall. Mater. Trans. B, 2017, vol. 48, pp. 1833-49.

    Article  Google Scholar

  30. B.G. Thomas: Steel Research Int., 2018, vol. 89, 1700312.

    Article  Google Scholar

  31. J. Frohlich and D. von Terzi: Progress in Aerospace Sciences, 2008, vol. 44, pp. 349-77.

    Article  Google Scholar

  32. T. Ma, D. Lucas, T. Ziegenhein, J. Frohlich, and N.G. Deen: Chem. Eng. Sci., 2015, vol. 131, pp. 101-08.

    Article  Google Scholar

  33. C. Kratzsch, A. Asad and R. Schwarze: J. Manuf. Sci. Prod., 2015, vol. 15, pp. 49-57.

    Google Scholar

  34. H.A. Jakobsen, B.H. Sannaes, S. Grevskott, and H.F. Svendsen: Ind. Eng. Chem. Res., 1997, vol. 36, pp. 4052-74.

    Article  Google Scholar

  35. M.T. Dhotre, B. Niceno, and B.L. Smith: Chem. Eng. J., 2008, vol. 136, pp. 337-48.

    Article  Google Scholar

  36. Y. Sato, M. Sadatomi, and K. Sekiguchi: Int. J. Multiphase Flow, 1975, vol. 2, pp.79-87.

    Article  Google Scholar

  37. F.R. Menter: AIAA Paper #93-2906, 24th Fluid Dynamics Conference, July 1993.

  38. J. Smagorinsky: Month. Weather Rev., 1963, vol. 91, pp. 99-165.

    Article  Google Scholar

  39. M. Germano, U. Piomelli, P. Moin, and W.H. Cabot: Phys. Fluids A, 1991, vol. 3, pp.1760-65.

    Article  Google Scholar

  40. D.K. Lilly: Phys. Fluids A, 1992, vol. 4, pp. 633-35.

    Article  Google Scholar

  41. M. Ishii and N. Zuber: AIChE J, 1979, vol. 25, pp. 843-55.

    Article  Google Scholar

  42. D.A. Drew and R.T. Lahey: Int. J. Multiphase Flow, 1987, vol. 13, pp. 113-21.

    Article  Google Scholar

  43. J.C.R. Hunt, A.A. Wray, and P. Moin: Center for Turbulence Research Report, 1988, pp. 193–208.

  44. D.J. Van Cauwenberge, C.M. Schietekat, J. FlorĂ©, K M. Van Geem, and G.B. Marin: Chem. Eng. J., 2015, vol. 282, pp. 66-76.

    Article  Google Scholar

  45. Z.Q. Liu and B.K. Li: Chem. Eng. J., 2018, vol. 338, pp. 465-77.

    Article  Google Scholar

Download references

Acknowledgments

This work was financially supported by the Fundamental Research Funds for the Central Universities of China (No. N162504009), the National Natural Science Foundation of China (Nos. 51604070 and 51574068) and the China Scholarship Council (No. 201706085027). The financial supports by the RHI-Magnesita AG; the Austrian Federal Ministry of Economy, Family, and Youth; and the National Foundation for Research, Technology, and Development within the framework of the Christian Doppler Laboratory for Advanced Process Simulation of Solidification and Melting are gratefully acknowledged.

Author information

Authors and Affiliations

Corresponding author

Correspondence to Zhongqiu Liu.

Additional information

Manuscript submitted June 20, 2018.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Vakhrushev, A., Wu, M. et al. Scale-Adaptive Simulation of Transient Two-Phase Flow in Continuous-Casting Mold. Metall Mater Trans B 50, 543–554 (2019). https://doi.org/10.1007/s11663-018-1443-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1007/s11663-018-1443-0

Keywords

  • Scale Adaptive Simulation (SAS)
  • Resolved Turbulent Structures
  • Large Eddy Simulation (LES)
  • Reynolds-averaged Navier–Stokes (RANS)
  • Unsteady Region

ellismille1986.blogspot.com

Source: https://link.springer.com/article/10.1007/s11663-018-1443-0

0 Response to "Single Observation Adaptive Search for Continuous Simulation"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel